Guideline and Regulations

Team composition and eligibility
  • Each team should consist of one to three student members from the same public or private high school or non-profit community organization. There is no restriction on ethnicity.
  • Each team must be supervised by a coach. The coach could be a high school teacher, a professor of a college or university, or an adult instructor/group leader of a community organization.
  • Student status is defined by school enrollment on September 2018. If a student leaves the original school after September 2018, the student will be considered as representing the original school even if the student is enrolled at another institution at the time of report submission.
  • A school may have more than one team participating in the competition. A coach may also lead more than one team. However, a student can be listed only in one team.
  • A team may choose to have a faculty mentor in addition to have a school teach as a coach.
  • The distinction between a coach and a faculty mentor is in the intensity of day-to-day interaction with the participating students. For example, a faculty mentor¡¯s involvement could be limited to initial formulation of a problem and to provide reference guidance whereas a coach works with students regularly and frequently.
Conflict of Interest Policy

DYSA (Math) strives to encourage all to participate in mathematics investigation, and it wants to encourage members of the mathematics community to get involved. For instance, members of international committees, national committees or regional committees may recruit their students, former students, colleagues, associates, friends and relatives to participate. This policy is intended to balance the interests of all participants and the need of recruitment. Except explicitly mentioned below, all are encouraged to participate freely.

  • Children and grandchildren of members of the International Committee are not eligible to participate.
  • Members or spouse of members of International Committees and National Committees are not eligible to serve as mentors, coaches or teachers for any teams.
  • In competitions at regional levels, if a panelist finds himself/herself to be the parents or grandparents of any participating members, he should rescue himself from evaluating the concerned project and is not eligible for vote on the concerned project. The number of approval for the concerned project will be the number of ¡°yes¡± votes divided by the numbers of voting members of a panel.

Any team that fails to satisfy the general eligibility or the conflict of interest policy will be deprived of any rights to prize and honor. Any team that meets the general eligibility and the conflict of interest policy will be evaluated solely according to the rules stated in the section ¡°Selection Criteria.¡±

Research Area

The areas of research must be mathematical sciences and their applications, such as:

  • Basic research: e.g. algebra, analysis, geometry, probability, statistics.
  • Engineering applications: computing, internet, communications, information and digital technology, etc.
  • Commercial applications: economics, finance, logistics, management, decision science, operations research, transportation, etc.
  • Scientific applications: medicine, physics, chemistry, biology, environment and health problems, etc.
  • Innovation designs: image and visualization, games, puzzles, algorithms, etc.
Selection Criteria

The DYSA (Math) strives to provide a fair and encouraging environment for all participants. Depending upon the level of competition, projects will be evaluated by regional, national or international panels. All panelists are asked to evaluate each project with professionalism and scholarship according to the following criteria.

  1. Relevance to mathematical sciences (pure and applied mathematics, statistics and probability).
  2. The topics for investigations could be pure mathematics including applied mathematics and statistics. In applied mathematics, the issues could be in all the subject areas mentioned in the section of ¡°Research Area¡±. However, the leading factor for evaluation will be in the level of innovation of mathematical methodology in the project.

  3. Originality in choice of subject for investigation and/or choice of techniques.
  4. Subjects for investigation could be either original problems or existing conjectures. A participating team is responsible for adequate literature review on the background or originality of its problems. A problem known to the learned community in general, but unknown to the participating teams do not constitute originality.

  5. Creativity in problem solving and methodology.
  6. Successful projects, especially those in applied mathematics, are expected to either develop new methodology or to synthesize existing techniques. A routine application of existing methodology may not be competitive.

  7. Rigor in mathematical development.
  8. Development of methodology and solutions are expected to demonstrate rigorous concepts and derivations.

  9. Contribution and potential to future mathematical development.
  10. A project carries high merits if the results will induce other or further advance in mathematical sciences or if the methodology has potential for application in wider or other applications.

  11. Scholarship and clarity of written report
  12. A report has to be well written, with an abstract in less than one page, review of the background problems and methodology, and citation of references. The report must also make clear distinction between background materials and original contributions.

  13. If applicable, scholarship and clarity of spoken presentation
  14. An oral presentation should demonstrate the background of the problem, key background materials, and above all, the teams¡¯ original contributions.

  15. If applicable, demonstration of teamwork
  16. In oral presentation, it is expected that every participating student will speak on behalf of the team in an organized manner.

  17. If applicable, impact to subjects other than, but related to, mathematical sciences
  18. In an applied mathematics project, the topics and results are expected to be relevant to its subject area. Its impact will carry merits, but such merits do not override the merit in the previous criteria, especially in Criteria 1, 2, 3, 4, and 5.

Assessment Process

Successful participants are subjected to several levels of assessments: Research Report Review, Regional Presentation, Pending funding availability, selected regional winners of the overseas regional presentation may be eligible for the Final Competition. It will be an Oral Defense.

  • Research Report Review
  • Each submitted research report will first be screened by a Screening Panel to determine whether it has met basic academic standards. Each report that passes the initial screening is sent to members of the Prize Selection Committee (Overseas) or referees in the relevant fields for review. The Prize Selection Committee (Overseas) will select no more than ten teams to participate in the ¡°Regional Presentation¡±.

  • Regional Presentation
  • Each invited team will be given 20 minutes to verbally present its project in front of an expert panel. Visual aids such as display board, overhead transparency and computer projection are allowed. Each team is subjected to no more than ten minutes of questions from the panel. Only student members could participate in the presentation. The panel consists of mainly college professors.

    In 2017, a regional presentation outside Greater China is expected to take place in Los Angeles. It is tentatively set for November, 2018. This date will be confirmed with qualified presenters. Pending program funding and qualified participations, it is possible that one additional presentation is scheduled outside North America in mid-November.

    The presentation is not open to public. However, up to four representatives from each invited team could observe each presentation. Questions and comments from the audience are not allowed during all presentations and Q&A time.

  • Final Competition (Oral Defense)
  • The Scientific Committee of Dongrun-Yau Science Awards (Mathematics) consists of the International Committee and the National Committee. The committee is the highest authority of the assessment and guarantees the academic standard of the Awards.

    The National Committee has the right to review recommendation of the Prize Selection Committee (Overseas). It also has the right to review the research reports of the recommended finalists. Once a finalist team is approved by the National Committee, this team is qualified to participate in the Final Competition (Oral Defense) in China in December 2018.

    Members of the Scientific Committee adjudicate the oral defense. Each team selected to participate in the oral defense will make a brief presentation of their research, followed by an inquiry before the members of the Scientific Committee. The Scientific Committee will take into consideration the team's performance in the oral defense session when choosing the winners of DYSA (Math).

Academic Honesty and Guidance

In the process of the research, students are encouraged to consult with experts and coaches. However, team members should have actually performed the research task and should truly understand the content of their work. Methods and results due to others used in the research should be cited, and documented in a reference list of the report. Each participating team should observe the common standard of academic integrity adopted by most mathematics journals or degree theses.

Intellectual Property

Original work and results are the intellectual belongings to the participants and this is respected by DYSA (Math). The DYSA (Math) only reserves the first right of refusal on the works of award winners. Winners should approach the DYSA (Math) before they publish their works or derive any benefit from it. In addition, works of winners may be used in part or in full for the promotion of DYSA (Math) in future.

Research Reports

Each research report should have at least the following sections.

  • A cover page includes student names, affiliation, states/provinces, countries of the students, coaches, mentors if applicable, and title of the project.
  • The second page is a one-page abstract to include the title of the project, and to outline the background of a team¡¯s topics, and highlight the team¡¯s contribution in addressing the proposed topics.
  • Technical reports are expected to be in English. If a technical report is written in Chinese, the report should include an additional one-page abstract in English.
  • A technical report
  • References
  • If applicable, acknowledgement to named individuals and institutions should be given in a separate page, at the end of the report.

Each report is subjected to the following restriction: Names of students, teachers/coaches, mentors, their affiliations, states/provinces, countries should not appear anywhere other than the cover page of the report.


Webmaster :yauawards@cms.zju.edu.cn Administrant Entrance

Copyright@2008, Center of Mathematical Sciences, All Rights Reserved